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ABSTRACT

The Collaborative Australian Ballistics Research code, Casbar , is a simula-
tion tool for the analysis of the interior ballistics of guns. The code solves a
two-phase, axisymmetric form of the governing equations for the flow of gas
and particulates in the gun, and accommodates multiple projectiles within
the simulation. Casbar is also suitable for investigating intermediate bal-
listics, and can alternatively be used as a general compressible flow solver.
Casbar supports user-customised types of deterred or undeterred propellant
grain, flexible definition of initial conditions and ignition sources, and vari-
ous constitutive submodels for simulating interphase drag and intergranular
stress. This document, the Casbar User’s Guide, explains the use of the code
and available options, and provides a worked example with corresponding
input files.
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1 Introduction

Casbar is a suite of simulation tools that can be used to analyse the interior ballistic
process in gun systems. The analysis is based on solving a governing set of conserva-
tion equations that describe the two-phase flow within a gun chamber. The equations
are solved by discretising in a finite-volume manner. Thus Casbar is considered a com-
putational fluid dynamics (CFD) tool.

This document is a manual on the use of Casbar — it provides information about
input preparation, running simulations and post-processing. Additionally, some exam-
ple cases are explained as tutorials. This manual only includes enough theory so that
the input options are explained clearly. For more information on the theory behind the
Casbar program, see Gollan and coworkers (2007)1.

2 Overview of the simulation procedure

Setting up a simulation is mostly an exercise in writing a text-based description of
your gun system. This specification file is a Python file with a .py extension. Also,
the description of the propellant grain(s) appears in a separate Python file. By using
a separate file for the propellant description, you can build up a library of propellant
types and re-use the specifications without the errors of “copying-and-pasting” from one
simulation file to another. Having prepared a problem specification file and propellant
description file, the general steps for a simulation are as follows:

1. Prepare the propellant data file with the command
> prepare_propellant.py propellant.py propellant.dat

where propellant.py is the propellant description file prepared by hand and
propellant.dat is the machine-generated output file in INI format that is used by
the main simulation program. The instructions for preparing a propellant descrip-
tion file are detailed in Section 3.2.

2. Prepare the main simulation files with the command
> casbar_prep.py �job=job

The italics word job should be replaced by the chosen name for your job. The
command does not require that you type the .py extension. In this case it would
look for a file named job.py in the working directory.

The preparation program writes out various text files for use as input for the main
simulation program:

• .p file: This is the parameter file written in INI format. Normally, you would
not need to create one of these parameter files manually. It is handy though
to edit one or two parameters in the file without rerunning the simulation
program. For example, you may wish to change the CFL number or edit how
frequently the program writes out complete field solutions.

1Gollan, Johnston, O’Flaherty and Jacobs, Development of Casbar: a Two-phase Flow Code for the Interior
Ballistics Problem, 16th Australasian Fluid Mechanics Conference (2007).
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• .g file: This file specifies the vertices which comprise the grid. Each of the
blocks is listed sequentially in this file. Do not attempt to hand edit this file.

• .s0 file: This file specifies the inital solution (flow field) for the simulation.
It has a structured format which lists the conditions in every cell. Do not
attempt to hand edit this file.

• .projectile0 file: The initial conditions for the projectile(s) if present are listed
in this file.

Additionally some data files relating to the gas properties and possibly a look-up
table for an igniter flux boundary condition may be created depending on what
was requested in the problem specification.

3. The main simulation routine is run using the C++ program casbar_main.x.
> casbar_main.x �job=job

4. The postprocessing step is somewhat specific based on what is desired. This step
is documented in Section 4.

3 Constructing input files

As mentioned earlier, there are two Python files that the user needs to construct (with
a text editor): (1) the problem specification file, and (2) the propellant(s) description file.
All of the other input files are created based on the instructions in these two user input
files. Commonly we refer to user input in these Python files as “Python-level” input.
The actual simulation routine casbar_main.x parses INI-style files for input — these INI
files are created by the preparation programs.

3.1 Problem specification file

The problem specification file is a Python file that is used to define the gun problem
of interest. The input file is loaded by another Python program, casbar_prep.py. The
controlling program, casbar_prep.py, begins by setting up some default global data
(default timestep, default CFL, for example) and then executes the user’s input file to
get the specific parameters for the job. Thus a user’s script can override the defaults
provided by casbar_prep.py. In addition, casbar_prep.py is expecting that the user’s
script also provides details about the flow conditions, flow domain and other details of
the simulation. In general, the order of declarations is unimportant in the user’s script
though there are some constraints:

• A gas model, grain burning model and intergranualar stress model must be set
before a flow condition.

• A flow condition must be set before a block definition.

3
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• Geometric entities are required to construct a block and so must be set before the
block definitons.

With that in mind, a recommended order of problem specification is:

1. Simulation control parameters such as timestep, frequency of solution writing and
maximum simulation time.

2. Gas model.

3. Grain burning model.

4. Intergranular stress model.

5. Interphase drag model.

6. Flow conditions.

7. Flow domain: geometry and block definition.

8. Projectile specification.

9. Igniter zone specification (optional).

10. History locations for data recording (optional).

In the next sections, each of these items is described in detail. It may be helpful to
flick forward to page 30 to view an example input file in order to give some context to
the following discussion.

3.1.1 Simulation control parameters

The simulation control parameters which affect global aspects of the simulation are
stored in an object called gdata2. Upon entry to the user’s script the gdata object is
already initialised and certain defaults are set. The user can then override the defaults
by setting the appropriate object attribute. The user sets an attribute by using a simple
assignment statement. For example, to set the simulation title and initial timestep, the
following two statements would be used:

gdata.title = "My gun simulation"

gdata.dt = 1.0e-5

A list of the most commonly used control parameters are given in Table 1. This table
gives the name of the attribute, the type of value and the available options pertaining
to that attribute. Each parameter listed in Table 1 is set the in the user’s script with an
assignment of the form:

gdata.param = value

The table also lists the default values for the various parameters where applicable. If a
parameter is missing from the input script it will receive this default value.

2The gdata object is an instance of the TwoPhaseGlobalData2D class which is defined in casbar_prep.py.
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Table 1: Description of simulation control parameters.

Parameter Type Description
title string The title string may be used to give a unique iden-

tifier to the simulation. This string is picked up in
a number of places in the simulations routines.

problem_type string This is used to set which set of physical processes
that Casbar will consider. The available options
are:

"interior_ballistics" (default) This problem
type solves the complete interior ballistitics
problem including processes such as gas
and particulate transport, grain combustion
and ignition modelling.

"gas_transport" Casbar can actually be used as
single-phase code for compressible flow
problems by selecting this problem type.

"particulate_transport" This problem type is
used to test the transport of the particulate
phase.

"two_phase_shock_problem" This problem type
is for verification puposes and does not
solve a flow problem of practical interest for
the user.

"closed_vessel" This problem type simulates a
closed vessel with no flow processes; only
grain combustion occurs. This problem type
is used during code testing and provides a
convenient means to exercise the grain com-
bustion module.

"drag_only" When “drag only” is selected, the
two-phase flow problem with drag interac-
tion is computed. None of the other physi-
cal processes of the interior ballistics process
are considered.

"piston_solver" This solves a single-phase (gas
flow) problem with piston motion included.
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Parameter Type Description
two_phase_system string This option relates to the governing equa-

tions used to solve the problem. There is
a subtle distinction between problem_type and
two_phase_system. The problem_type parame-
ter selects which physical processes are simu-
lated. The two_phase_system selects the set of
conserved variables. Presently there is only one
option: "Gough" (default), and as such it may be
omitted. This parameter is present so that in fu-
ture versions different sets of governing systems
may be easily selected.

axisymmetric_flag integer There are two options:

1 (default) axisymmetric geometries, y = 0 is
taken as the symmetry line.

0 for planar geometries.

gas_flux_calc string There are two flux calculators implemented for
the gas phase transport problem:

"ausmdv" (default) Recommended.

"ausm"

particulate_flux_calc string There are two flux calculators implemented for
the particulate phase transport problem which
parallel the gas phase flux calculators:

"ausmdv-p" (default) Recommended.

"ausm-p"

x_order integer This parameter controls the order of accuracy
used by the spatial reconstruction:

1 Low-order reconstruction. Cell-centred values
are taken as interface values.

2 (default) Higher-order reconstruction. A piece-
wise parabolic segment is used to recon-
struct interface values and a limiter is ap-
plied.
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Parameter Type Description
t_order integer This parameter controls the order of time integra-

tion accuracy:

1 Euler method of update (first order).

2 (default) Predictor-corrector method (second
order).

cfl float This value sets the Courant-Friedrichs-Lewy
(CFL) number for the numerical methods. The
default value is 0.5.

dt float This is the initial time step used. The default value
is 1.0e-6 s. The time step will change during the
simulation based on the CFL criterion. If the sim-
ulation fails very early, it might be helpful to re-
duce this initial timestep by an order of magni-
tude.

dt_plot float This parameter governs how frequently a com-
plete flow field solution is recorded. It is a value
in seconds in simulation time. Be careful not to
select a value that is too frequent as it is possi-
ble to fill your hard disk by writing out too many
snapshots of the flow field.

dt_history float This parameter controls how often the data in his-
tory cells and projectile state are written to file.
This value is often smaller then dt_plot as it does
not take much disk space to record information at
a few selected cells.

max_time float This is the maximum simulated flow time that the
simulation should run for.

max_steps integer This is the maximum number of steps that the
simulation should take. This value is set in case
the flow simulation runs into trouble and starts
taking very small time steps.

3.1.2 Gas model

The gas model is selected by calling the set_gas_model method of the gdata object.
The format for that call is:

gdata.set_gas_model(gas_name, gas_input_file)

where gas_name is a string specifying the type of gas model and gas_input_file is a
string specifying a file name which contains the accompanying data for the gas model.
There are numerous gas models available but listed here are those of most interest for
the interior ballistics problem:
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"Noble_Abel_gas" A single-species gas with real gas effects accounted for by a co-
volume value.

"Noble_Abel_gas_mix" A mixture of the gases where each component is described as
Nobel-Abel gas.

"ideal_gas" An ideal gas with calorifically perfect behaviour (single-species).

"ideal_gas_mix" A mixture of the aforementioned ideal gas.

The second aspect of the gas model specification is the gas_input_file. These files
are INI-type files which contain the data about the specific gases. It is possible to prepare
them by hand but it is often easiest to use one of the provided convenience functions
which will create the input file directly. Here is a list of convenience functions — the
detailed documentation for some of these functions follows.

• create_Noble_Abel_gas()

• create_Noble_Abel_gas_mix()

• create_ideal_gas()

• create_ideal_gas_mix()

create_Noble_Abel_gas():

The create_Noble_Abel_gas() function is used to create an input file for a Nobel-Abel
gas based on user-supplied gas parameters.

create_Noble_Abel_gas(R=287.0, gamma=1.4, name="Noble_Abel_gas", b = 0.001,

Prandtl=0.72, Lewis=1.0, mu_ref=17.89e-6, T_ref=273.1, S=110.4, q=0.0,

filename="Noble_Abel_gas.dat" )

The keyword arguments are (default values are in the function signature):

• R: specific gas constant in J/kg/K

• gamma: ratio of specific heats

• name: a label for the gas (of no real importance just for user’s convenience)

• b: co-volume for gas in m3

• Prandtl: the value for Prandtl number

• Lewis: the value for Lewis number

• mu_ref: a reference viscosity in Pa.s used in the Sutherland viscosity law

• T_ref: a reference temperature in K used in the Sutherland viscosity law

• S: the Sutherland constant in K
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• q: a heat release value for the gas in J/kg

• filename: the name for the file to be created which will hold the gas data

The default values shown here (which are applied by calling create_Noble_Abel_gas()

without any arguments) are for air with a co-volume of 0.001m3 (which may or may
not be appropriate for your case).

create_Noble_Abel_gas_mix():

create_Noble_Abel_gas_mix(file_list, filename="Noble_Abel_gas_mix.dat")

The Noble-Abel gas mix is comprised of Noble-Abel gas components. One would usu-
ally create the component input files by calling create_Noble_Abel_gas() for each com-
ponent. The create_Noble_Abel_gas_mix() function then assembles an input file based
on the component input files which are listed in file_list. The keyword argument
filename is used to specify the name of the data file for the gas mixture.

An example should hopefully make this clear. Suppose you wish to specify a mixture
of two gases with Noble-Abel behaviour. The first gas represents the propellant products
and the second gas is the ambient air. You would proceed as follows:

1. Create the Noble-Abel gas dat file for the component gases: call
create_Noble_Abel_gas() twice

2. Create the input data file for the mixture of two gases: call
create_Noble_Abel_gas_mix() once

3. Declare the gas model and input file: call gdata.set_gas_model() once

Thus the snippet in your script file would be:

# 1. Create component gases

create_Noble_Abel_gas(name="propellant gas", R=390.3, gamma=1.27,

b=0.0010838, filename="propellant_gas.dat")

create_Noble_Abel_gas(name="Air", R=287.0, gamma=1.4, b=0.001,

filename="air.dat")

# 2. Create the data file for the gas mixture

create_Noble_Abel_gas_mix(["propellant_gas.dat", "air.dat"],

filename="Nobel_Abel_gas_mix.dat")

# 3. Declare the gas model and input file

gdata.set_gas_model("Noble_Abel_gas_mix","Noble_Abel_gas_mix.dat")

This example also highlights that keyword arguments can appear in any order, pro-
vided all required keywords are supplied. Thus you will note that the order in this
example is different to the function signature from above. This is a feature of Python
syntax — it is not peculiar to this input script or the Casbar program.
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If you had already created Noble_Abel_gas_mix.dat in another simulation, you
could just copy that file to your current working directory and proceed directly to step
3, selection of the gas model. Remember that steps 1 and 2 are just convenient ways to
create the input file, Noble_Abel_gas_mix.dat — you could have copied or created this
by any other means so long as it is a vaild input file.

Finally, the functions create_ideal_gas() and create_ideal_gas_mix() are used
in the same way as their Noble-Abel counterparts except that the create_ideal_gas()

does not accept a b parameter.

3.1.3 Grain burning model

The grain burning model describes the combustion properties of the various types
of propellant grains. The specification of grains can become quite complex as the input
allows for multiple grain types and multiple layering of solid types within grains. For
this reason, the grain input file is prepared from a stand-alone script with the program
prepare_propellant.py. This procedure is described fully in Section 3.2. In the simu-
lation input script, the user only needs to specify the name of the grain input file. So
assuming the grain input file has been previously created with prepare_propellant.py,
the grain burning model is declared using:

gdata.set_grain_model(grain_file)

where grain_file is a string denoting the name of the grain input file.

3.1.4 Intergranular stress model

The intergranular stress model is set per grain type and the grains are numbered
from 0 . . . N − 1 where N is the number of grain types.3 Thus a declaration using the
set_igs_model() method of the gdata object should appear for each grain type.

gdata.set_igs_model(index, igs_model, igs_input_file)

where index is an integer identifying the grain type, igs_model is a string giving the
intergranular stress model name and igs_input_file is a string giving the name of
the input file for the specified stress model. The currently available intergranular stress
models are:

• "Gough_stress_model"

• "Koo_Kuo_model"

• "Kuo_Summerfield_model"

3In common with Python and C/C++ conventions, numbering begins from zero. This is consistent
throughout Casbar ; blocks, cells, species, and so on, are always numbered from zero.
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Each of these models requires an accompanying input file to completely specify the
model. Similar to the gas model input, there are certain convenience functions available
to create the input files. They are:

• create_Gough_stress_model_input()

• create_Koo_Kuo_stress_model_input()

• create_Kuo_Summerfield_stress_model_input()

Thus the usual sequence of calls in the user script is to use one of these convenience
functions to create an input file, and then declare the intergranular stress model with
gdata.set_igs_model().

create_Gough_stress_model_input():

In the rheological model proposed by Gough for the intergranular stress, there are a
number of parameters which are dependent on the grain. The equations for stress and
associated granular wave speed are:

R = ρpa2
1ε2

0

(
1
εg
− 1

ε0

)
(1)

and

ap =


a1(ε0/εg) εg 6 ε0

a1 exp[−κ(ε− ε0)] ε0 < εg < ε∗

0 εg > ε∗

(2)

where a1, ε0, κ and ε∗ are empirical constants based on the properties of the granular
bed.

The user may set each of these parameters by using the following function

create_Gough_stress_model_input(eps0, eps_star, a1, kappa,

const_wave_speed, filename)

where

• eps0 is the settling porosity (often taken as the initial porosity), ε0 (float)

• eps_star is the model parameter ε∗ (float)

• a1 is the model parameter a1 in m/s (float)

• kappa is the model parameter κ (float)

• const_wave_speed is a Boolean (True or False) indicating whether a constant wave
speed assumption should be used. If it is set true, the value given as a1 is used as
the granular wave speed, otherwise wave speed is computed using Equation 2.

• filename is a string for the data file into which the model parameters will be
written.
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create_Koo_Kuo_stress_model_input():

The Koo and Kuo stress model calculates intergranular stress and wave speed from:

R =

{
−ρpC2 εg

εc

(
εc−εg
1−εg

)
εg 6 εc

0 εg > εc
(3)

and
ap = Cref

εc

ε
. (4)

The user is required to supply the model parameters Cref and εc. This may be done by
calling the following function:

create_Koo_Kuo_stress_model_input(C_ref, eps_c, filename)

Following the established pattern, filename is the name of the file into which the model
parameters are written.

create_Kuo_Summerfield_stress_model_input():

In the Kuo and Summerfield model, integranular stress is calculated as:

R =


κ
[

1
1−εc −

1
1−εg

]
1−εg

εg < εc

0 εg > εc

(5)

The user needs to select the model parameters εc and κ. The wave speed calculation
is the same as the Koo and Kuo model and as such the user specifies a value for Cref.
Thus an input file for the Kuo and Summerfield intergranular stress model is created
using:

create_Kuo_Summerfield_stress_model_input(C_ref, eps_c, kappa, filename)

3.1.5 Interphase drag model

The interphase drag model is presently implemented as a global model to calculate
the exchange of momentum between the gas phase and particulate phase due to drag. If
there are multiple grain types present, the momentum is shared between various grain
types based on their relative volumes in a given finite-volume cell. The interphase drag
model is declared by calling the method set_drag_model() of the object gdata:

gdata.set_drag_model(drag_model, drag_input_file)

where drag_model is the name of a specific model for the interphase drag and
drag_input_file is an input file for the model. Presently there are two options for
interphase drag model:

• "Ergun_drag_model"
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• "zero_drag" – not really a model but may be used to “turn off” interphase drag
terms.

The Ergun drag model only requires a single parameter: a critical porosity, a value
which allows the calculation to vary between modelling a packed bed or a fluidised
bed. It may seem like overkill to create an input file just to specify one parameter. The
justification is that future implementations may include more compilcated drag models
which require more input parameters. So by using a file based input for this simple
Ergun drag model the input will remain consistent when more complicated models
become available. The function call to create the Ergun model input file is:

create_Ergun_drag_model_input(eps0, filename)

where eps0 is the critical porosity mentioned earlier.

3.1.6 Flow conditions

A flow condition is a complete specification of the flow state at some point in time
and space — thermodynamic state of the gas; gas phase velocity; stress state of the grains
(loading density); and velocity of component grain types. A flow condition, built from a
FlowCondition object, is often used to set initial conditions in the domain and boundary
conditions at the edge of the domain such as a specified flux boundary condition.

First we describe the ParticulateCondition object which is used to specify the state
of a single grain type. The FlowCondition object is composed of ParticulateCondition
objects for each grain type as well as gas phase information.

A ParticulateCondition may be intialised as:

initial_loading = ParticulateCondition(index, u=0.0, v=0.0, ld=1000.0, r=0.0)

where

• index: is an integer specifying which grain this condition applies to

• u: is the x-velocity (axial) in m/s

• v: is the y-velocity (radial) in m/s

• ld: is the loading density of the grain type in kg/m3

• r: is the regression distance of a single grain of the given grain type in m. Usually
this value is 0.0 for unburnt grains, however, a positive value may be specified to
simulate already partially burnt grains.4

Given that some ParticulateCondition objects have been instantiated, you can de-
clare a flow condition using:

4This might be useful for patching the solution of one simulation into a larger domain.
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initial = FlowCondition(p=None, T=None, rho=None, u=0.0, v=0.0, mf=[1.0,],

particulate_conditions=[None])

where

• p: is the gas pressure in Pa

• T: is the gas temperature in K

• rho: is the gas density in kg/m3

• u: is x-velocity of the gas in m/s

• v: is y-velocity of the gas in m/s

• mf: is a list of component mass fractions. The values in this list should sum to 1.0.

• particulate_conditions: this is list of previously named ParticulateCondition

objects. If a grain type is non-existent in a certain region (for example, intially
ahead of the projectile), the Python keyword None may be given in the list. You
must still list a condition for each grain type even if that condition is None. When
the program receives None it will put zero mass of that grain type in the flow
condition.

Note only two state variables for the gas should be specified: that is, choose only
two out of pressure, temperature and density. If you specify all three, one of the values
will be ignored and the thermodynamic state will be computed based on only two of
the values. The code attempts to compute the state based on what values it finds and it
tries, in order, to use (1) pressure and temperature; followed by (2) pressure and density;
and finally (3) temperature and density.

3.1.7 Block definition of the flow domain

Most of the effort required to set up a simulation goes into defining the “body-
fitted” grid of finite-volume cells that completely fills the flow domain. This grid is
block structured, with each block defined by four edges (NORTH, EAST, SOUTH and
WEST) fitted to the actual edges of the flow domain.

To define a block in your input script, create a Block2D object as:

my_block = Block2D(parametric_surface, nni, nnj,

cf_list, bc_list, fill_condition,

hcell_list, label)

where

• parametric_surface: is a region of 2D space bounded by four edges. See Sec-
tion 3.1.7.3 for a guide to constructing a surface.
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• nni: is the number of finite-volume cells in the i-direction. Note that, when plac-
ing one block against another, the blocks must conform in

– the number of cells along corresponding edges

– the clustering of those cells along the edges

– the path defining the corresponding edges.

• nnj: is the number of finite-volume cells in the j-index direction.

• cf_list: which stands for cluster functions list is a list of Function objects that
specify a (possibly) nonuniform distribution of cells along a particular edge of
the parametric_surface. The order that the edges are listed in is NORTH, EAST,
SOUTH, WEST. If this option is omitted, all edges receive a uniform distribution
of cells.

• bc_list: is a list of boundary conditions that are applied to the edges in the order
NORTH, EAST, SOUTH, WEST. If this option is omitted, all boundaries are treated
as walls5. The available boundary conditions are described in Section 3.1.7.2.

• fill_condition: accepts either a FlowCondition object with which to define
the initial flow state within the block volume or a user-defined function that
varies in space to define the flow state. See Section 3.1.6 for defining a suitable
FlowCondition. A discussion about user-defined fill functions follows this list.

• hcell_list: is a list of (i, j)-tuples specifying which cells should be monitored at
simulation time. Data from the specified cells will be written to a “history” file for
the simulation and may be used at the postprocessing stage to provide flow data
as if there was a sensor located in the cell. As always, cell numbering begins from
zero.

• label: is an optional text label for the block. This label will be embedded in the
block definition and some of the postprocessing programs may use it.

If using multiple blocks, the block connections need to be specified. This is most
easily achieved by calling the automated identify_block_connections() function after
declaring the blocks.

3.1.7.1 User-defined fill functions A user may define a Python function that specifies
how a block should be filled based on spatial variations. This can be used to initialise
non-uniform flow fields (like propellant loading at one end only) or to transfer an old
solution onto the new grid. The rules for the function are simple:

1. The function accepts two parameters, x and y, in that order which represent the x
and y spatial positions (in physical coordinates) in the flow field.

2. The function returns an object of type FlowCondition.

5Certain boundaries may later be converted to connection boundaries if, after all the blocks have been
specified, the identify_block_connections() function is called.
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Note when returning the FlowCondition object it is useful to use the keyword argu-
ment add_to_list=False. This prevents the program from storing all of the temporary
flow conditions created by the function call from being recorded in the global list of flow
conditions.

An example of a user-defined fill function is given here. It simply initialises a pro-
pellant bed in the left-end of the domain, the chamber, below x = 0.0. In the right-end,
the barrel, ambient air conditions are given. Note the function MUST accept x and y

even if it only varies in one spatial dimension.

propellantloaded = ParticulateCondition(0, u=0.0, v=0.0, r=0.0, ld=913.47)

def fill_function(x, r):

if x < 0.0:

return FlowCondition(p=0.1e6, u=0.0, v=0.0, T=294.0,

mf=[0.0, 1.0, 0.0],

particulate_conditions=[propellantloaded],

add_to_list=False)

else:

return FlowCondition(p=0.1e6, u=0.0, v=0.0, T=294.0,

mf=[0.0, 1.0, 0.0],

particulate_conditions=[None],

add_to_list=False)

Alternatively, we could have named the two flow conditions earlier in the script and
avoided needing to use the add_to_list=False argument. This is shown here.

propellantloaded = ParticulateCondition(0, u=0.0, v=0.0, r=0.0, ld=913.47)

propellantIC = FlowCondition(p=0.1e6, u=0.0, v=0.0, T=294.0,

mf=[0.0, 1.0, 0.0],

particulate_conditions=[propellantloaded])

barrelIC = FlowCondition(p=0.1e6, u=0.0, v=0.0, T=294.0,

mf=[0.0, 1.0, 0.0],

particulate_conditions=[None])

def fill_function(x, r):

if x <= 0.0:

return propellantIC

else:

return barrelIC

These two examples give the equivalent initial flow field in the block.

3.1.7.2 Boundary conditions The boundary conditions for blocks may be set in the
block definition as a list of conditions (bc_list) or they may be set after a block defini-
tion using:

my_block.set_BC(EAST, Extrapolate_boundary_condition())
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In this method, the first argument specifies which boundary (NORTH, EAST, SOUTH
or WEST) and the second argument is the boundary condition to apply.

The boundary conditions are all derived types of the abstract C++ class
Boundary_condition. The constructors are made available at the Python-level input via
SWIG. The available boundary conditions are:

• Wall_boundary_condition() (default) is a reflecting wall boundary condition.

• Extrapolate_boundary_condition() assumed supersonic outflow where the
ghost-cell flow properties are simply copies of the adjacent interior cell proper-
ties.

• Common_boundary_condition() this is used to specify that an edge has an internal
connection to another block. Normally the user doen’t need to specify this as the
identify_block_connections() will take care of applying
Common_boundary_conditions in the right places.

• Igniter_flux_boundary_condition(filename) specifies a spatially and tempo-
rally varying flux boundary condition. The specified flux is intended to mimic
the effect of igniter material discharge. The spatially and temporally varying na-
ture of the flux boundary is handled through a look-up table given as the argument
filename. This look-up table is most easily created using the
create_igniter_lut_bc_file() convenience function which is documented in
Section 3.1.9.2. The spatial variation along a boundary is only treated in one-
dimenion. The following are the dimension of interest for each of the edges:

– NORTH: x-dimension varies

– EAST: y-dimension varies

– SOUTH: x-dimension varies

– WEST: y-dimension varies

For example, when treating a SOUTH boundary condition with an igniter flux, the
x position of the cell-centres along the SOUTH boundary are used to “look-up”
the appropriate flux at that point.

3.1.7.3 Constructing surfaces: geometry The top-level geometry description given to
the grid generator is in terms of “parametric surfaces”. These are regions of 2D space
that may be traversed by a set of parametric coordinates 0 ≤ r < 1 and 0 ≤ s < 1. These
surfaces can be constructed as a “boundary representation” from lower-dimensional
geometric entities: paths and points.

The most fundamental class of geometric object is the Vector (or Vector3 as it is
defined in the C++ module libgeom2). A Vector represents a point in 3D space and
has the usual behaviour of a geometric vector (as opposed to the vector collection class
in C++). If you want a point to be rendered with a label, you can define it as a Node.
Examples of use include: a = Vector(x, y) and b = Node(x, y, label='B').
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The next level of dimensionality is the Path class. A path object is a parametric curve
along which points can be specified via the single parameter 0 ≤ t < 1. Types of paths
that are available include:

• Line(a,b): a straight line between points a and b.

• Arc(a,b,c): a circular arc from a to b around centre, c.

• Arc3(a,b,c): a circular arc from a through b to c. All three points lie on the arc.

• Bezier([b0, b1, ..., bn]): a Bezier curve from b0 to bn.

• Polyline([p0, p1, ..., pn]): a composite path made up of the segments p0, through
pn. The individual segments are reparameterised, based on arc length, so that the
composite curve parameter is 0 ≤ t < 1.

• Polyline2( .. arbitrary list of Vectors and Paths .. ): a composite path made by
joining points and paths with straight lines in the sequence listed. Note: The user’s
script will need to import this special object if needed. Before using, add the line:
from cfpylib.geom.path import Polyline2

• Spline([b0, b1, ..., bn]): a cubic spline from b0 through b1, to bn. A Spline is actually
a specialised Polyline.

The user may construct a ParametricSurface which uses transfinite interpolation
from four paths which represent the NORTH, EAST, SOUTH and WEST boundaries of
a surface. The function to construct this is make_patch and it accepts four path objects
in the order of NORTH, EAST, SOUTH and WEST. The ends of paths should coincide
at the approriate corners otherwise the grid generator will complain. This function
returns a ParametricSurface suitable for the the Block2D object to construct a grid. The
function call is:

make_patch(north, east, south, west)

3.1.8 Projectile specification

Projectiles may be specified using the Projectile object. You can initialise a projec-
tile by calling the initialiser with the following options:

Projectile(m, D, xL0, xR0,

v0=0.0, rifling_twist=0.0, rog=0.0,

bore_resistance_x=[0.0,],

bore_resistance_p=[0.0,],

constant_velocity=False,

positive_velocity=False,

vanish_at_x=VERY_LARGE_X,

name="")

18



DSTO–GD–0594

Note that the initialisation of a Projectile requires four mandatory arguments: m, D,
xL0 and xR0. The rest of the arguments are keyword arguments — if not specified the
defaults are applied as shown. The parameters for the Projectile object are:

• m: is the mass of the projectile in kg

• D: is the diameter of the projectile in m

• xL0: is the starting position of the projectile (WEST face of projectile) in the x-
direction (axial) in m

• xR0: is the fininishing position position of the projectile (EAST face of the projec-
tile) in the x-direction (axial) in m

• v0: is an initial x-velocity of the projectile in m/s

• rifling_twist: is the number of turns per calibre. If set to zero, a smooth bore is
simulated.

• rog: is the radius of gyration in m

• bore_resistance_x: is a list of x-ordinates (in m) which specify break points for
the interpolation of bore resistance as a function of axial position. If the list only
has one value then there is nothing to use for interpolation and so a constant value
of bore resistance is applied everywhere.

• bore_resistance_p: is a list used in conjunction with bore_resistance_x list to
specify the variation of bore resistance as a function of axial distance. This list
contains the value of resistance in pressure, Pa, at the locations corresponding to
the bore_resistance_x list. The number of entries in bore_resistance_x and
bore_resistance_p must match or an error will be raised.

• constant_velocity: is a Boolean which will set the projectile’s motion at constant
x-velocity, v0, if set to true. When set to false (default), the projectile moves under
the influence of the pressure forces acting on its faces.

• positive_velocity: is a Boolean value (True ot False). If true, the projectile
will only be allowed to have positive velocities. If a negative velocity is computed
based on flow conditions, the projectile velocity will be set to zero. If set to false
(default), the projectile update proceeds as normal.

• vanish_at_x: is an x-ordinate in m which specifies at position at which the pro-
jectile is removed (or “vanishes”) from the simulation. Its intent is to allow for the
removal of the projectile at some point in the far field.

• name: is an optional name for the projectile.

3.1.9 Ignition modelling

There are two ways to model the ignition process in the code: (1) as a volume of
influence, and (2) as flux at a boundary. The two methods are not mutually exclusive in
a given simulation.
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3.1.9.1 Ignition zone An IgnitionZone object may be used to specify a region in the
flow where some mass and energy are added to the gas in order to mimic the effect of
ignition. The declaration of an IgnitionZone has the following signature:

IgnitionZone(point0, point1,

rdot, chem_energy, mf,

t_start, t_end, label="")

where

• point0: is a Vector3 object which locates the bottom left corner of the ignition
zone.

• point1: is a Vector3 object which locates the upper right corner of the ignition
zone.

• rdot: is the rate of mass addition per unit volume of physical space, ρ̇, in
kg/m3/s. Note this is per total volume available, not only that available to the
gas.

• chem_energy: is the chemical energy the injected gas is created with in J/kg.

• mf: is a list of mass fractions which identifies which gaseous species the injection
of mass goes into. The values in this list should sum to 1.0.

• t_start: is the starting time for the ignition zone to take effect in s.

• t_end: is the finishing time for the ignition zone’s influence in s. After this simu-
lation time is exceeded the ignition zone no longer has any effect.

• label: an optional label.

You may specify multiple igniton zones. The implementation is quite naïve about
the interacting ignition zones. The criteria for applying the effects of ignition are simply
this:

1. Does the cell-centre of a finite-volume cell lie within the bounding box (point0,
point1)? and

2. Is the current simulation time between t_start and t_end?

If these two criteria are satisfied, then the cell with have mass and enegy added at the
rate dictated by rdot and chem_energy. If a given cell satisfies this criteria for more than
one IgnitionZone then the effect will be accumulative.

If you wanted to mimic the effect of varying ignition rates in a given region, you
could declare multiple IgnitionZone objects that acted over different times by using
different values for t_start and t_end in each of the declarations.
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3.1.9.2 Igniter flux at a boundary We saw earlier that specifiying an igniter flux
boundary condition involved setting the boundary condition to
Igniter_flux_boundary_condition(filename) where filename is a look-up table de-
scribing how the flux varies in space and time. Now we discuss how to construct a
look-up table through the use of some supplied convenience functions.

A look-up table file for the igniter flux boundary condition is created using:

create_igniter_lut_bc_file(flux_function, s_locations,

t_locations, filename)

where

• flux_function: is a user-defined Python function that accepts s and t which
are spatial and temporal values respectively, and returns the fraction exposed fe

and a FlowCondition object. This function is exlained in more detail below, but
essentially describes how the flux at the boundary varies spatially and temporally.

• s_locations: is a list of spatial locations which will be used when constructing
the look-up table. For a SOUTH boundary this would be a list of x-ordinate values,
for an EAST boundary this would be a list of y-ordinate values, and so on. The
user chooses how fine or coarse the look-up table is by the number and distribution
of values in the list. The values should sequentially increase.

• t_locations: is list of time values which will be used when constructing the look-
up table. Similarly to s_locations, the user chooses the granularity of the look-up
table interpolation by choosing the distribution of t_locations.

• filename: is the name of the file in which the look-up table will be created. This
file is later handed to the boundary condition during specification. It is usual to
name this file with a .gz extension because this function creates a gzipped textfile.6

The user-defined function has some minimal stipulations:

1. It must accept a spatial and temporal variable in that order: def f(s, t)

2. It must return a tuple which contains the fraction of area exposed at that point and
the flow condition: return (fe, FlowCondition).

The flux is calculated based on the area through which the FlowCondition is applied
and the actual condition itself. The FlowCondition is specified in the global frame of
reference, so a v-velocity for gas flow will move in the radial direction. Also, the interface
area is set by the boundary along which the flux condition is supplied. If you set the
boundary condition on a y = 0.0 boundary in an axisymmetric simulation you will not
get any flux at all because the interface area on the y = 0.0 line is zero.

We now look at an example to see it all in action. In this example, the igniter flux is
modelled along a length of 25 cm beginning from x = −1.0 m. The flux begins at t = 0.0
and finishes when t = 2.5 ms. In that region the available surface area for material flux
is only 50%. The code in our script would be as follows.

6The zlib library is used to create the file.
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# ------------------------------------------------------

# 1. Define the function which represents the flux

# ------------------------------------------------------

def flux_function(x, t):

# First test within time constraint

if t > 2.5e-3:

# Flow condition is arbitrarily at atm conditions

# because the fraction exposed is 0.0

return (0.0, FlowCondition(p=1.0e5, T=300.0,

u=0.0, v=0.0, mf=[1.0],

particulate_conditions=[None],

add_to_list=False))

# Next test if outside x range

if (x < -1.0) or (x > -0.75):

# Again return an arbitrary flow condition with the

# fraction exposed equal to 0.0

return (0.0, FlowCondition(p=1.0e5, T=300.0,

u=0.0, v=0.0, mf=[1.0],

particulate_conditions=[None],

add_to_list=False))

# So, therefore, we are in the 25cm of igniter region

# and in the time period of interest

return (0.5, FlowCondition(p=1.0e6, T=1000.0,

u=0.0, v=100.0, mf=[1.0],

particulate_conditions=[None],

add_to_list=False)

# ------------------------------------------------------

# 2. Specify the points in the look-up table in x and t

# ------------------------------------------------------

x_locations = [ -1.0 + i*2.5e-3 for i in range(11) ]

t_locations = [ 0.0 + i*2.5e-4 for i in range(12) ]

# ------------------------------------------------------

# 3. Construct the look-up table

# ------------------------------------------------------

create_igniter_lut_bc_file(flux_function, x_locations,

t_locations, "lut_bc.dat.gz")

# ------------------------------------------------------

# 4. Use on the SOUTH boundary of my_block

# ------------------------------------------------------

my_block.setBC(SOUTH, Igniter_flux_boundary_condition("lut_bc.dat.gz"))

The internal implementation uses bi-linear interpolation (between space and time) to
compute the appropriate flux based on cell-centre positions in the boundary condition
calculation. The user should take care at the edges of their look-up table: constant
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extrapolation is used at the edges of the table, ie. the closest edge value is taken as the
value. The ramifications are that in this example we ensured there was a time interpolant
point in the flux equals zero regime. If this had not been the case, the last point may
have left the flux “turned on” for all time after t = 2.5 ms.

We’ll repeat the warning in another way. Just because the user-defined function
turns fluxes on and off in the appropriate way at the appropriate times does not mean
that the internal effect is guaranteed. The selection of spatial and temporal locations
for the interpolation points also influences the behaviour. The easiest way to avoid
any surprises is to place interpolation points close to, but either side of any intended
boundaries in your flux function.

3.1.10 Specifying history locations

When constructing a Block2D, you may optionally specifiy a hcell_list which al-
lows you nominate specific cells at which the history of flow data should be recorded.
It is often more convenient so specify (x, y) coordinates rather than the (i, j) index val-
ues which are grid specific. The HistoryLocation object allows you to use physical
coordinates and may be declared using:

HistoryLocation(x, y, label="")

where x is the x ordinate, y is the y ordinate and label is an optional label. The label is
used to help you identify the cell in the casbar_history_cells.list file. If you declare
one or more HistoryLocation objects, a file, casbar_history_cells.list, is created
listing the information about the located cell: block number and (i, j) indices.

The searching algorithm will locate the nearest cell-centre to the chosen (x, y) values.
The searching algorithm has no knowledge about the extents of the actual flow domain.
Therefore, it is possible to requrest a location beyond the edge of the domain — the
returned value will simply be the closest cell to that location. The history file indicates
the actual location of the history cell in the columns x_found and y_found.

3.1.11 Summary: simulation checklist

In this section we again review the list presented in Section 3.1, which detailed a
recommended sequence of declarations in the input file. However, we now present it as
a checklist and indicate the appropriate objects to initialise and functions to call.

� Declare simulation control parameters such as flux calculators and initial timestep.
Each declaration has the form: gdata.param = value.

� Select the gas model. After creating an appropriate input file, declare the gas
model by calling the method: gdata.set_gas_model(model_name, input_file).

� Specify the grain burning model. Given that a grain input file has been prepared
(see Section 3.2), use the method: gdata.set_grain_model(input_file).
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� Select the intergranuluar stress model (for each grain type) and the set the appro-
priate model parameters. First create an input file using one of the convenience
functions, then use the member method:
gdata.set_igs_model(index, model_name, input_file).

� Set the interphase drag model. An input file may be created using a con-
venience function and then the model is declared by calling the method:
gdata.set_drag_model(model_name, input_file).

� Set flow conditions using the FlowCondition construct. This is only necessary if
you are using flow conditions which fill entire regions. If you elect to use a block
fill function, you might defer specification of those flow conditions to that function.

� Specify geometry and build blocks. Declare Nodes. Construct Paths built from
those Nodes. Create surface patches based on the Paths. Finally, construct blocks
(Block2D objects) which define the flow domain.

� Optionally, declare a number of Projectile objects.

� Optionally, declare a number of IgnitionZone objects.

� Optionally, declare a number of HistoryLocation objects.

3.2 Propellant grain description file

The propellant grain description file propellant.py is a Python file that is used to
define the propellants of interest. The propellant grain description file is processed
by another Python program, prepare_propellant.py, which subsequently generates
an INI format data file suitable for loading by Casbar itself. As noted in Section 2,
the following command line processes the propellant.py input file into the machine-
generated output file propellant.dat which can be read by Casbar :

> prepare_propellant.py propellant.py propellant.dat

In practice, the user may choose to automate this step by including it within the main
Python job.py job file:

os.system("prepare_propellant.py propellant.py propellant.dat")

Irrespective of how propellant.dat is generated, an instruction needs to be included in
job.py to tell Casbar to load it:

gdata.set_grain_model("propellant.dat")

In this example we have used the filenames propellant.py and propellant.dat, how-
ever the user is free to choose any legal filename which might better suit their needs.

Definition of the propellants in the propellant.py propellant grain description file
is achieved in two parts:
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• First, a set of solids are defined to represent each distinct energetic material for-
mulation in the simulation.

• Second, each propellant grain type is defined in terms of its geometry and its
composition of one or more layers. Each layer is composed of one—or a mixture—
of the declared solid types.

3.2.1 Definition of the energetic material solid types

Each distinct energetic material is defined in the manner of the following example:

example_solid = Solid("my_example_solid_propellant_material",

density=1578.0,

flame_temperature=2585.0,

combustion_energy=3.7369e6,

gas_massf=[1.0, 0.0, 0.0],

burn_rate_min_p=[0.0, 200.0e6,],

burn_rate_param_a=[0.00078385,0.001,],

burn_rate_param_b=[0.0, 0.0,],

burn_rate_param_n=[0.9, 1.0,])

The initial arguments are

• the name of the solid.

• density: True density of the solid in kg/m3.

• flame_temperature: Flame temperature of the solid in K.

• combustion_energy: The intensive internal energy e of the solid’s combustion
products, in J/kg.

• gas_massf: An array of mass fractions, defining the gaseous products produced by
combustion of the solid. The species order reflects the order of definition described
in Section 3.1.2, and the sum of the mass fractions should equal unity.

The subsequent arguments define the linear burn rate of the solid material. The linear
burn rate r (in m/s) is defined by Vielle’s law, r = aPn + b. Multiple sets of coefficients
and exponents, corresponding to different pressure ranges, may be used to obtain a
higher fidelity burn rate model if desired.

• burn_rate_min_p: An array of minimum pressures for which each set of burn rate
parameters is valid, in Pa.

• burn_rate_param_a: An array of Vielle’s law coefficients for each pressure range,
in MPa−n m/s.

• burn_rate_param_n: An array of Vielle’s law exponents for each pressure range.
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• burn_rate_param_b: An array of Vielle’s law parameters for each pressure range,
in m/s.

The user can alternatively define blocks of constant burn rate by specifying a = 0 and
defining b as desired for each pressure range. It is important to note that, unlike all
other Casbar inputs, the units of a above are not base SI. This is to reflect that most
published burn rate coefficients for Vielle’s law correspond to P in MPa.

Where a simulation is to incorporate a deterred propellant solid, the user should
define an additional unique solid with burn rate properties modified to match that of
the deterred material.

Once all solids are defined, they are declared using:

declare_solids([example_solid])

3.2.2 Definition of the propellant grain types

The actual propellant grain types are defined in terms of their geometry, the solid
energetic materials they contain, and the grain ignition temperature. Initially, the pro-
pellant geometry and ignition temperature is defined in the manner of the following
example:

example_grain = Grain("my_example_propellant_grain",

geom_type="GRAIN7PERFCYL",

outer_diameter=11.43e-3,

perforation_diameter=1.143e-3,

length=25.4e-3,

ignition_temperature=444.0)

The ignition_temperature is expressed in K, and represents the local gas temperature
that would cause the grain to ignite. Casbar supports a number of grain geometries.
The currently available geom_type keywords, and the required input dimensions for
each, are now described.

• GRAINCYLINDER: A solid cylinder or cord. Specify outer_diameter of the cord and
cord length.

• GRAIN1PERFCYL: A single-perforated cylindrical grain. Specify outer_diameter of
the cylinder, perforation_diameter and length.

• GRAIN7PERFCYL: A seven-perforated cylindrical grain. Specify outer_diameter of
the cylinder, perforation_diameter and length. Webs are assumed to be of equal
size.

• GRAIN19PERFCYL: A nineteen-perforated cylindrical grain. Specify outer_diameter

of the cylinder, perforation_diameter and length. Webs are assumed to be of
equal size.

26



DSTO–GD–0594

• GRAINSPHERE: A solid ball. Specify outer_diameter of the sphere.

Each grain type may contain one or more solid energetic materials. The solids (or
mixtures of solids) are arranged in layers, where each layer is defined by its depth from
a free surface where combustion occurs. In the case of perforated grains, the perforation
surfaces are also treated as free surfaces. The following example shows the definition of
a grain comprised wholly of a single solid, and thus containing a single layer:

example_grain.add_layer(solid_massf=[1.0],

layer_start=0.0)

The array solid_massf denotes the mass fractions of solid materials in that layer, in the
order defined in Section 3.2.1. The keyword layer_start defines the start of the layer,
expressed as depth from the initially unburnt free-surfaces of the grain. Multiple layers
with varying mass fractions can be defined, for example, to approximate impregnation
of one solid material through another.

Finally, the propellant grains must be declared to Casbar using

declare_grains([example_grain])

4 Postprocessing tools

4.1 Extracting field data: casbar_post.py

The postprocessing program casbar_post.py may be used at the command line to
extract field data from the simulation domain. The command-line options are explained
here.

> casbar_post.py --job=JOBNAME --format=FORMAT --output=OUTPUT

[--time=TIME|--initial|--final|--all]

�job=JOBNAME
JOBNAME is the base file name that is used for your simulation. The program will
look for .s and .p files based on this name.

�format=FORMAT
FORMAT is one of: save, vtk or tecplot.

�output=OUTPUT
OUTPUT is the base part of the output file name. The program will add the
appropriate extension based on the format and time option.

One only of the following options must be specified:
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�time=TIME
TIME is the time in seconds at which the field is desired. The program will select
the first field solution that is greater than the specified time value.

�initial

The initial flow field is extracted and written to a file OUTPUT-initial plus
appropriate extension. The .s0 file is used as the data.

�final

The solution file (.s) is scanned for the final solution and this is written to OUT-
PUT-final plus appropriate extension.

�all

All available field solutions are written out in sequence. This may be useful for
creating animations.

4.2 Extracting history data: casbar_history.x

The history cell data is recorded in the .h file for all history cells in the flow field.
The casbar_history.x program may be used to extract the data for a specific history
cell and write the data in a form suitable for plotting. It is important that the user
is aware how many history cells are in the simulation because the history extraction
program needs this value in order to correctly pull out the data.

> casbar_history.x --parameter-file JOBNAME.p --input JOBNAME.h

--output OUTPUT --ncell <1> --cell <0>

�parameter-file JOBNAME.p
This option indicates the appropriate parameter file.

�input JOBNAME.h
This option is used to specify the history file.

�output OUTPUT
This is the name of the file, chosen by the user, into which the history data for the
selected cell will be written.

�ncell ncells
ncells is the number of history cells which appear in the file JOBNAME.h The
default value is 1.

�cell cell_no
cell_no is the number of the specific history cell for which the data is required. The
numbering of cells is from 0 . . . ncells− 1. The default value is 0.
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4.3 Extracting profile data: casbar_prof.py

The user may extract a line of data from the flow field using the casbar_prof.py

tool. The line follows a constant i or j index through the grid and so does not necessarily
correspond to line of constant x or y value. The resulting output file is in a form ready
for plotting. The data in each of the columns is identified by the fields in the first line of
the output file.

casbar_prof.py --job=JOBNAME --output=OUTPUT

[--i-line=<i_index>|--j-line=<j_index>]

[--block-list=<BLK_LIST>]

[--time=TIME|--initial|--final|--all]

�job=JOBNAME
JOBNMAE is the base file name that is used for your simulation. The program will
look for .s and .p files based on this name.

�output=OUTPUT
OUTPUT is the base part of the output file name. The program will append the
extension .prof to this name.

The user must select either an �i-line or a �j-line:

�i-line=i_index
i_index is the integer value of constant i-index along which the profile is extracted.
This would usually be used to select a vertical line throughout the grid.

�j-line=j_index
j_index is the integer value of constant j-index along which the profile is extracted.
This would usually be used to select a horizontal line throughout the grid.

Additionally, the user must select one of the following time options:

�time=TIME
TIME is the time in seconds at which the profile is desired. The program will select
the first solution that is greater than the specified time value.

�initial

The profile is extracted from the initial flow field and written to a file OUT-
PUT-initial.prof. The .s0 file is used as the data.

�final

The solution file (.s) is scanned for the final solution and the extracted profile is
written to OUTPUT-final.prof.

�all

All available field solutions are processed and the appropriate profile is written
out to files in sequence. Useful for creating animations.
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4.4 Separating the data for multiple projectiles

The Casbar program stores the information for all projectiles in the .projectile file.
Each line begins with an index indicating which projectile that line of data applies to. In
the case of a single projectile, it is easy to use the .projectile file directly for plotting.
When you have multiple projectiles you may wish to separate the data into separate
files. A trivial awk7 program as shown below may be used from the command line:

awk -v proj=1 '$1 == proj { for (i=2; i<=NF; i++) \

printf "%s ", $i; printf "\n"; }' \

< jobname.projectile > output

In this example, the data for the second projectile (index = 1, therefore proj=1) is ex-
tracted from the input file jobname.projectile and the data is written to a file named
output.

5 Example: The AGARD gun

5.1 AGARD gun description

The “AGARD gun” is a synthetic test case, which has previously been used for
performing code-to-code comparisons in several TTCP efforts, including KTA 4-13 and
KTA 4-38. See, for example, Woodley, Modelling the ignition of 40mm gun charges, 22nd
International Symposium on Ballistics, Vancouver, 2005.

The gun chamber diameter and bore diameter are constant at 132 mm, and the
bore resistance is a constant 13.79 MPa. The projectile base is initially located 762 mm
downstream from the breech. In this example, the igniter is assumed to vent uniformly
throughout the full chamber diameter, in the region between the breech and 127mm
downstream of the breech. Heat loss to the barrel is neglected. The propellant consists of
cylindrical 7-perforated grains. Thermal properties of the propellant and other relevant
data are prescribed and shown at Table 2.

5.2 Listing of agard_propellant.py

The following listing shows the Casbar propellant description file used to define the
AGARD gun propellant properties and geometry. Note that we specify that the pro-
pellant produces only one product gas, with the corresponding properties of that gas
described in the job file. While in reality the propellant combustion would produce mul-
tiple species, for simplicity we simply use an homogenous product gas with properties
matching that of the mixture of those species.

7The awk programming language is available on most linux distributions.
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Table 2: AGARD Gun Data (Woodley, 2005)

Gun calibre (mm) 132 (constant)
Initial position of projectile from breech face (mm) 762
Travel of projectile (mm) 4318
Distance from breech face to muzzle (mm) 5080
Bore resistance (MPa) 13.79 (constant)
Projectile mass (kg), flat base 45.359
Propellant mass (kg) 9.5255
Propellant solid density (g/cc) 1.578
Propellant geometry cylindrical 7-hole
Propellant grain length (mm) 25.4
Propellant grain diameter (mm) 11.43
Propellant perforation diameter (mm) 1.143
Propellant burn rate coefficient (cm/s/MPan) 0.078385
Propellant burn rate pressure index (n) 0.9
Propellant adiabatic flame temperature (K) 2585
Propellant ignition temperature (K) 444
Propellant thermal conductivity (W/s/K) 0.2218
Propellant thermal diffusivity (mm2/s) 0.08677
Propellant emissivity (-) 0
Propellant chemical energy (MJ/kg) 3.7369
Propellant molecular weight (g/mol) 21.3
Propellant specific heat ratio (-) 1.27
Propellant impetus (MJ/kg) 1.009
Propellant co-volume (cc/g) 1.0838
Propellant intergranular wave speed (m/s) 254
Igniter mass (kg) 0.2268
Igniter density (g/cc) 1.799
Igniter chemical energy (MJ/kg) 1.5702
Igniter molecular weight (g/mol) 36.13
Igniter specific heat ratio (-) 1.25
Igniter impetus (MJ/kg) 0.3926
Igniter adiabatic flame temperature (K) 1706
Initial temperature in chamber (K) 294
Initial pressure atmospheric
Molecular weight of ambient air (g/mol) 29
Specific heat ratio of ambient air (-) 1.4
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# A python description file for

# agard propellant.

agard_solid_propellant = Solid("agard_solid_propellant",

density=1578.0,

flame_temperature=2585.0,

combustion_energy=3.7369e6,

gas_massf=[1.0, 0.0, 0.0], # [prop gas, air, primer]

burn_rate_min_p=[0.0,],

burn_rate_param_a=[0.00078385,],

burn_rate_param_b=[0.0,],

burn_rate_param_n=[0.9,])

declare_solids([agard_solid_propellant])

agard_propellant_grain = Grain("agard_propellant",

geom_type="GRAIN7PERFCYL",

outer_diameter=11.43e-3,

perforation_diameter=1.143e-3,

length=25.4e-3,

ignition_temperature=444.0)

agard_propellant_grain.add_layer(solid_massf=[1.0],

layer_start=0.0)

declare_grains([agard_propellant_grain])

5.3 Listing of agard.py

The following listing shows the Casbar propellant job file used to define the AGARD
gun simulation. The listing contains explanatory commenting throughout, preceded by
the Python commenting # symbol. In addition, note that:

• The import os command is required in order to effect the processing of the pro-
pellant description file from within this Python job file.

• Various convenience variables (like Diameter) and functions can be defined to suit
the user.

• The barrel is made longer than specified in the case definition, by the length of
the projectile. This allows room for the projectile to fully exit the “real” muzzle
location before the simulation stops. Otherwise, the simulation would end when
the projectile nose reaches the end of the barrel.

• A medium resolution of 129 cell vertices in the x-direction, and 8 in the radial
direction, is used.

• A Python function, fill_function, is used to provide the intial conditions for the
entire solution domain. It uses each cell’s x-location to determine whether it is
to be filled by air (upstream of the projectile) or propellant (between breech and
projectile base).
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• The origin for coordinates has been chosen to correspond to the centre of the
projectile base. This x-origin is arbitrary, however, and any other convenient point
along the symmetry axis could have been used.

# AGARD idealized gun test case

#

import os

Diameter = 132.0e-3

r = Diameter/2.0

p_length = 0.381

job_title = "AGARD"

gdata.title = job_title

gdata.stringent_cfl = 1

gdata.two_phase_system = "Gough"

gdata.problem_type = "interior_ballistics"

#

# Drag model

#

settling_porosity = 0.42112

create_Ergun_drag_model_input(settling_porosity, "Ergun_drag_model.dat")

gdata.set_drag_model("Ergun_drag_model", "Ergun_drag_model.dat")

#

# Gas model

# 3 gases: propellant gas, air, primer

#

create_Noble_Abel_gas(name="agard propellant gas", R=390.3, gamma=1.27, b=0.0010838,

filename="agard_propellant_gas.dat")

create_Noble_Abel_gas(name="Air", R=287.0, gamma=1.4, b=0.001,

filename="air.dat")

create_Noble_Abel_gas(name="agard primer gas", R=230.1, gamma=1.25, b=0.001,

filename="agard_primer_gas.dat")

create_Noble_Abel_gas_mix(["agard_propellant_gas.dat", "air.dat", "agard_primer_gas.dat"],

filename="agard_gas_mix.dat")

gdata.set_gas_model("Noble_Abel_gas_mix","agard_gas_mix.dat")

#

# Propellant Grain

#

os.system("prepare_propellant.py agard_propellant.py agard_grain.dat")

gdata.set_grain_model("agard_grain.dat")

#

# Stress model

#

eps_star = 0.55 # dummy value as we're using constant wave speed

kappa = 1.0 # dummy value as we're using constant wave speed

a1 = 254.0 # m/s as specified in AGARD case

const_wave_speed = True

create_Gough_stress_model_input(settling_porosity, eps_star, a1, kappa, const_wave_speed,

"Gough_stress_model.dat")

33



DSTO–GD–0594

gdata.set_igs_model(0, "Gough_stress_model", "Gough_stress_model.dat")

#

# Flow conditions

#

propellantloaded = ParticulateCondition(0, u=0.0, v=0.0, r=0.0, ld=913.47)

propellantIC = FlowCondition(p=0.1e6, u=0.0, v=0.0, T=294.0, mf=[0.0, 1.0, 0.0],

particulate_conditions=[propellantloaded])

barrelIC = FlowCondition(p=0.1e6, u=0.0, v=0.0, T=294.0, mf=[0.0, 1.0, 0.0],

particulate_conditions=[None])

#

# Block Geometry

#

a = Node(-0.762, 0.000, label="a")

b = Node( 4.318 + p_length, 0.000, label="b")

c = Node(-0.762, r, label="c")

d = Node( 4.318 + p_length, r, label="d")

# Breech Projectile Muzzle

# Base (At Origin)

# c pppppp d

# a 0pppppp b

# < 762mm >< 4318mm + p_length >

ab = Line(a, b)

cd = Line(c, d)

ac = Line(a, c)

bd = Line(b, d)

nx = 129

ny = 8

def fill_function(x, r):

if x <= 0.0:

return propellantIC

else:

return barrelIC

blk_0 = Block2D(make_patch(cd, bd, ab, ac),

nni=nx, nnj=ny,

fill_condition=fill_function,

hcell_list=[(0,0)],

label="blk_0")

blk_0.set_BC(EAST, Extrapolate_boundary_condition())

proj = Projectile(m=45.359, D=Diameter,

xL0=0.0, xR0=p_length,

v0=0.0, bore_resistance_p=[13.79e6],

bore_resistance_x=[0.0],

name="proj")

ignition_source = IgnitionZone(Vector(a.x, a.y), Vector(a.x+127.0e-3, a.y+r),

13049.73, 1.5702e6, [0.0, 0.0, 1.0],

0.0, 10.0e-3)
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HistoryLocation(a.x+10.0e-3, r)

HistoryLocation(a.x+750.0e-3, r)

#

# Job parameters

#

gdata.axisymmetric_flag = 1

gdata.gas_flux_calc = "ausmdv"

gdata.particulate_flux_calc = "ausmdv-p"

gdata.max_time = 20.0e-3

gdata.max_step = 300000

gdata.x_order = 2

gdata.t_order = 2

gdata.cfl = 0.25

gdata.dt = 1.0e-6

gdata.fixed_time_step = 0

gdata.print_count = 20

gdata.dt_plot = 2.0e-4

gdata.dt_history = 1.0e-4

5.4 Running the simulation

The following listing shows the operating system shell commands required to pre-
pare and run the simulation, and extract history data from the results.

> casbar_prep.py --job=agard

> casbar_main.x --job=agard

> casbar_history.x -p agard.p -i agard.h -o history-breechmid.data --ncell 3 --cell 0

> casbar_history.x -p agard.p -i agard.h -o history-wall10mm.data --ncell 3 --cell 1

> casbar_history.x -p agard.p -i agard.h -o history-wall750mm.data --ncell 3 --cell 2
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